Penrose Inverse of Bidiagonal Matrices

نویسنده

  • S. S. ALEKSANYAN
چکیده

Introduction. For a real m×n matrix A, the Moore–Penrose inverse A+ is the unique n×m matrix that satisfies the following four properties: AAA = A , AAA = A , (A+A)T = AA , (AA+)T = AA (see [1], for example). If A is a square nonsingular matrix, then A+ = A−1. Thus, the Moore–Penrose inversion generalizes ordinary matrix inversion. The idea of matrix generalized inverse was first introduced in 1920 by E. Moore [2], and was later rediscovered by R. Penrose [3]. The Moore–Penrose inverses have numerous applications in least-squares problems, regressive analysis, linear programming and etc. For more information on the generalized inverses see [1] and its extensive bibliography. In this work we consider the problem of the Moore–Penrose inversion of square upper bidiagonal matrices

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New inverse data for tridiagonal matrices

We introduce bidiagonal coordinates, a new set of spectral coordinates on open dense charts covering the space of real symmetric tridiagonal matrices of simple spectrum. In contrast to the standard inverse variables, consisting of eigenvalues and norming constants, reduced tridiagonal matrices now lie in the interior of some chart. Bidiagonal coordinates yield therefore an explicit atlas for TΛ...

متن کامل

The inverse eigenvalue problem for symmetric anti-bidiagonal matrices

X iv :m at h/ 05 05 09 5v 1 [ m at h. R A ] 5 M ay 2 00 5 The inverse eigenvalue problem for symmetric anti-bidiagonal matrices Olga Holtz Department of Mathematics University of California Berkeley, California 94720 USA March 6, 2008

متن کامل

The inverse eigenvalue problem for symmetric quasi anti-bidiagonal matrices

In this paper we construct the symmetric quasi anti-bidiagonal matrix that its eigenvalues are given, and show that the problem is also equivalent to the inverse eigenvalue problem for a certain symmetric tridiagonal matrix which has the same eigenvalues. Not only elements of the tridiagonal matrix come from quasi anti-bidiagonal matrix, but also the places of elements exchange based on some co...

متن کامل

The reverse order law for Moore-Penrose inverses of operators on Hilbert C*-modules

Suppose $T$ and $S$ are Moore-Penrose invertible operators betweenHilbert C*-module. Some necessary and sufficient conditions are given for thereverse order law $(TS)^{ dag} =S^{ dag} T^{ dag}$ to hold.In particular, we show that the equality holds if and only if $Ran(T^{*}TS) subseteq Ran(S)$ and $Ran(SS^{*}T^{*}) subseteq Ran(T^{*}),$ which was studied first by Greville [{it SIAM Rev. 8 (1966...

متن کامل

Reconstruction of tridiagonal matrices from spectral data

Jacobi matrices are parametrized by their eigenvalues and norming constants (first coordinates of normalized eigenvectors): this coordinate system breaks down at reducible tridiagonal matrices. The set of real symmetric tridiagonal matrices with prescribed simple spectrum is a compact manifold, admitting an open covering by open dense sets Uπ Λ centered at diagonal matrices Λπ , where π spans t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015